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Abstract

The processing and analysis of high dimensional geometric data

plays a fundamental role in disciplines of science and engineering. A

systematic framework to study these problems has been developing

in the research area of discrete and computational geometry. This

Phd thesis studies problems in this area. The fundamental geometric

objects of our study are high dimensional convex polytopes defined by

an oracle.

The contribution of the thesis is threefold. First, the design and

analysis of geometric algorithms for problems concerning high-dime-

nsional convex polytopes, such as convex hull and volume computation

and their applications to computational algebraic geometry and opti-

mization. Second, the establishment of combinatorial characterization

results for essential polytope families. Third, the implementation and

experimental analysis of the proposed algorithms and methods.

Keywords: convex polytopes, volume computation, Newton poly-

tope of sparse resultant, secondary polytope, regular triangulations,

geometric predicates, algorithm engineering, experimental analysis

1 Introduction

The processing and analysis of high dimensional geometric data plays

a fundamental role in disciplines of science and engineering. In the last

decades many successful geometric algorithms have been developed in

2 and 3 dimensions. However, in most cases their performance in
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higher dimensions is poor. This behaviour is commonly called the

curse of dimensionality. A solution framework adopted for the heal-

ing of the curse of dimensionality is the exploitation of the special

structure of the data, such as sparsity or low intrinsic dimension, and

the design of approximation algorithms. This thesis studies problems

inside this framework.

The main research area is discrete and computational geometry

and its connections to branches of computer science and applied math-

ematics like polytope theory, algorithm engineering, randomized ge-

ometric algorithms, computational algebraic geometry and optimiza-

tion. The fundamental geometric objects of the study are polytopes,

with main properties of being convex and defined in a high dimensional

space.

The contribution of this thesis is threefold. First, the design

and analysis of geometric algorithms for problems concerning high-

dimensional convex polytopes, such as convex hull and volume com-

putation and their applications to computational algebraic geometry

and optimization. Second, the establishment of combinatorial char-

acterization results for essential polytope families. Third, the imple-

mentation and experimental analysis of the proposed algorithms and

methods. The developed software is open-source, publicly available

from:

http://sourceforge.net/users/fisikop.

It builds on, extends and is competitive with state-of-the-art geometric

and algebraic software libraries such as CGAL [3] and polymake [17].

What follows is a brief presentation of the research topics and

results of the thesis, avoiding technical details.

2 Polytopes and oracles

In polytope theory, a (convex) polytope P admits two explicit rep-

resentations. The first is the set of P vertices, which is called the

V-representation or vertex representation. The second is the bounded

intersection of a set of linear inequalities or half-spaces, which is called
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convex hull problem

vertex enumeration problem

Figure 1: The V- and H-representation of a convex polygon.

H-representation or halfspace representation. Given a polytope in V-

representation, computing the H-representation constitutes the convex

hull problem, while the opposite is the vertex enumeration problem.

These problems are algorithmically equivalent from a computational

complexity point of view by polytope duality and establish two of the

most important computational problems in discrete geometry. See

Figure 1 for an illustration. For a detailed presentation on several

aspects related to convex polytopes we refer to [26].

A polytope P can also be given by an implicit representation, called

(polytope) oracle. An oracle is a black box routine that answers ques-

tions regarding P . An optimization, or linear programming (LP), or

vertex oracle given a vector c returns a vertex of P that has the maxi-

mum inner product with c among all points in P . Another important

implicit representation for P is the separation oracle. That is, given a

point x the oracle returns yes if x ∈ P or a hyperplane that separates

P from x otherwise. To illustrate the above definitions, let P be given

in H-representation. Then an optimization oracle for P given a vector

c solves an LP problem on P , while a separation oracle for P given

point x evaluates the set of defining inequalities of P with x.

The relations among various oracles have been studied by Grötschel,

Lovàsz and Schrijver in [20] by adopting the oracle Turing machine

model of computation. To acquire, for example, an optimization ora-

cle for P when P is given by a separation oracle, one has to solve a

linear program over P . This can be done by the ellipsoid method [22].

Given an oracle for P , the entire polytope P can be reconstructed and
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A0

A1

N(R) R(a, b, c, d, e) = ad2b+ c2b2 − 2caeb+ a2e2

f0(x) = ax2 + b

f1(x) = cx2 + dx+ e

Figure 2: The resultant of a system of two polynomials in one variable.

its explicit representation can be found using an incremental convex

hull algorithm such as the Beneath-and-Beyond [4].

3 Algorithms for resultant polytopes

From the algebraic geometry perspective polytopes characterize poly-

nomials better than total degree thus offering the fundamental repre-

sentation in sparse elimination theory, called Newton polytopes. An

important class of such polytopes is the Newton polytopes of the

sparse resultant polynomial or simply the resultant polytopes. They

have been studied by Gelfand, Kapranov and Zelevinsky in [19] and

by Sturmfels in [25]. An example of the resultant of two polynomials

f0, f1 in one variable x is depicted in Figure 2. It is a polynomial R

in the coefficients a, b, c, d, e of the two polynomials which vanishes if

the system we get by specializing a, b, c, d, e to numerical values has

a solution. Here, the Newton polytope N(R) of the resultant is a

triangle.

In [19] the study of resultant polytopes is connected to the study

of secondary polytopes. The secondary polytope of a pointset A is a

fundamental object in geometric combinatorics since it offers a poly-

tope realization of the graph of regular triangulations of the pointset.

An equivalent realization is the graph of regular fine mixed subdivi-

sions of the Minkowski sum of pointsets. Figure 3 depicts an example

of secondary and resultant polytopes. In the special case where the

points in A are in convex position and two dimensional all triangu-
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Figure 3: Example of secondary and resultant polytopes: (a) The secondary

polytope of two triangles (dark, light grey) and one segment; vertices corre-

spond to mixed subdivisions of the Minkowski sum A0 + A1 + A2 and edges

to flips between them (b) the resultant polytope, whose vertices correspond

to the dashed classes of the secondary polytope. Bold edges of the secondary

polytope map to edges of the resultant polytope (c) 4-dimensional resultant

polytope of 3 generic trinomials with f-vector (22, 66, 66, 22); figure made

with polymake.

lations are regular and the secondary polytope is the 3-dimensional

associahedron [24].

Chapter 2 of the thesis presents the design and the analysis of

the first output-sensitive algorithm for computing (projections of) re-

sultant polytopes. The algorithm is output-sensitive as it makes one

oracle call per vertex and facet of the polytope. The key ingredients

of that algorithm is the compact representation of resultant polytopes

by an optimization oracle and the exploitation of their low intrinsic

dimension. The oracle constructs regular triangulations in order to

compute the optimal vertex in the polytope. Finally, the resultant

polytope is reconstructed using an incremental convex hull algorithm

that uses this oracle.
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The algorithm is implemented in the software package respol,

which computes 5-, 6- and 7-dimensional polytopes with 35·103, 23·103

and 500 vertices, respectively, within 2 hours on a standard computer,

and the Newton polytopes of many important surface equations en-

countered in geometric modelling in < 1sec, whereas the enumeration

of the vertices of the corresponding secondary polytopes is intractable.

respol has been used to solve essential problems in CAD [14] as well as

to compute discriminant polynomials [15]. We propose and implement

a technique called hashing of determinants, which avoids duplication

of computations by exploiting the nature of determinants computed

by the algorithm. In practice, this technique accelerates execution up

to 100 times.

The results of this work have been published in [12] and their

full version in [13]. An extension of the above method to computing

discriminant polytopes is discussed in Section 2.6 and has appeared

in [11].

4 Edge-skeleton computation

Motivated by the fact that the above algorithm is impractical in 8 or

more dimensions since it relies on an incremental convex hull algo-

rithm, the study extends in finding more efficient, i.e. total polynomial

time, algorithms for convex hulls. An algorithm runs in total poly-

nomial time if its time complexity is bounded by a polynomial in the

input and output size. In general dimension finding a total polynomial

time algorithm for vertex enumeration is a major open problem in al-

gorithmic geometry. However, total polynomial time algorithms exist

for vertex enumeration of special polytope cases, such as simplicial

polytopes [1] and 0/1-polytopes [2].

Here we establish another case where total polynomial time algo-

rithms exist. We present the first total polynomial time algorithm for

a special case of the vertex enumeration problem where the polytope

is given by an optimization oracle and we are also given a superset

of its edge directions. In particular the algorithm computes the edge-

skeleton (or 1-skeleton) of the polytope, which is the graph of poly-

tope vertices and edges. Since the vertices are computed along with
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the skeleton, the edge-skeleton computation subsumes vertex enumer-

ation.

We consider two main applications. We obtain total polynomial

time algorithms for computing signed Minkowski sums of convex poly-

topes, where polytopes can be subtracted provided the signed sum is

a convex polytope, and for computing secondary, resultant, and dis-

criminant polytopes. Further applications include convex combinato-

rial optimization and convex integer programming, where we offer an

alternative approach, thus removing the exponential dependence on

the dimension in the complexity.

The results of this work are presented in Chapter 3 of the thesis.

Some preliminary results have been published in [9] and their full

version in [10].

5 Approximate volume computation

Vertex enumeration in high dimensions (e.g. one hundred) using the

above methods is a futile attempt. Thus, this thesis aims at exploiting

the limits of learning fundamental characteristics of a polytope such

as its volume. Although volume computation is #-P hard for V- and

H-representations of polytopes [7] there exist randomized polynomial

time algorithms to approximate the volume of a convex body with

high probability and arbitrarily small relative error. Starting with

the breakthrough polynomial time algorithm of [6], subsequent re-

sults brought down the exponent on the dimension from 27 to 4 [23].

However, the question of an efficient implementation had remained

open.

This thesis undertakes this by experimentally studying the funda-

mental problem of computing the volume of a convex polytope given

as an intersection of linear inequalities. We implement and evalu-

ate practical randomized algorithms for accurately approximating the

polytope’s volume in high dimensions (e.g. one hundred). To carry

out this efficiently we experimentally correlate the effect of parame-

ters, such as random walk length and number of sample points, on

accuracy and runtime. Moreover, we exploit the problem’s geometry

by implementing an iterative rounding procedure, computing partial
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generations of random points and designing fast polytope boundary

oracles. Our publicly available code is significantly faster than exact

computation. We provide volume estimations for the Birkhoff poly-

topes B11, . . . , B15, whereas only the volume of B10 has computed

exactly.

The results of this work are presented in Chapter 4 of the thesis

and published in [8].

6 Combinatorics of resultant polytopes

We study the combinatorics of resultant polytopes. These are known

in the case of two polynomials in one variable, also known as the

Sylvester case [18] and in the case where the polytope’s dimension is

up to 3 [25]. We extend this work and at the same time answer an open

question raised in [21] by studying the combinatorial characterization

of 4-dimensional resultant polytopes, which show a greater diversity

and involve computational and combinatorial challenges.

In particular, our experiments, based on respol, provide a se-

ries of polytopes that establish lower bounds on the maximal number

of faces. By studying subdivisions of Minkowski sums, called mixed

subdivisions, we obtain tight upper bounds on the maximal number

of facets and ridges. These yield an upper bound for the number

of vertices, which is 28 whereas the general bound yields 6608 [25].

Figure 3(c) shows an instance with f -vector (22, 66, 66, 22) that max-

imizes the number of facets and ridges.

We establish a result of independent interest, namely that the f -

vector is maximized when the input is sufficiently generic, namely full

dimensional and without parallel edges. Lastly, we offer a classification

result of all possible 4-dimensional resultant polytopes.

The results of this work are presented in Chapter 5 of the thesis

and have been published in [5].

7 Geometric predicates

Geometric algorithms involve both combinatorial and algebraic com-

putation. In many cases, such as convex hull computations, the later
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boils down to determinant sign computations, also called geometric

predicates. As the dimension of the computation space grows, a higher

percentage of the computation time is consumed by these predicates.

Our goal is to study the sequences of determinants that appear in

geometric algorithms. We use dynamic determinant algorithms to

speed-up the computation of each predicate by using information from

previously computed predicates.

We propose two dynamic determinant algorithms with quadratic

complexity when employed in convex hull computations, and with lin-

ear complexity when used in point location problems. Moreover, we

implement them and perform an experimental analysis. Our imple-

mentations outperform the state-of-the-art determinant and convex

hull implementations in most of the tested scenarios, as well as giving

a speed-up of 78 times in point location problems.

The results of this work are presented in Chapter 6 of the thesis

and have been published in [16]. The developed software package has

been submitted in CGAL [3] and is currently under revision.

8 Extensions and open problems

Several intriguing open questions emerge by the study of this thesis.

From the geometric combinatorics point of view one question is to

understand the symmetry of the maximal f -vector, i.e. vector of poly-

tope’s face cardinalities, that appear in the study of the combinatorics

of 4-dimensional resultant polytopes.

There are a few questions related to sampling. The first is to

study volume approximation algorithms when an optimization oracle

is available. The current research focuses on convex bodies, or poly-

topes, represented by a membership oracle. A special case which is

also interesting is to sample random points from polytopes given in

V-representation without using membership queries. Other related

problems are computing the volume of spectahedra or general semi-

algebraic sets, application of the current software to other #P-hard

problems like counting linear extensions of partial ordered sets, in-

tegration of polynomial functions over convex polytopes, study poly-

topes that are easy/difficult to sample from under the assumption that
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they are rounded, study the quality of sampling or compare point sam-

ples, and sampling integer points from polytopes.

Nearest neighbour searching has been considered as one of the most

fundamental problems in computer science. Our study in Chapter 4

paves the way for an application of approximate nearest neighbour

searching to approximate polytope oracles and polytope volume ap-

proximation.
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